I. INTRODUCTION

The necessity for a better understanding of dynamical and structural properties of polymers has initiated many directions of interdisciplinary research, because structure and function of biopolymers and synthetic variants govern biological processes and technological applications. Nevertheless, over many decades, most of the scientific work has aimed at macroscopic systems such as single polymers with high polymerization degree or polymer melts. This was mainly due to the fact that on one side the experimental equipment was not capable of revealing finer structural details on smaller scales. On the other hand, the theoretical treatment of even very simple polymer models was only possible in limits, where cooperative effects on mesoscopic scales could be neglected. Only computational methods were found to enable investigations of systems, which are governed by finite-size effects on comparatively small scales. The most striking class of polymers is the set of biologically relevant polymers that, in particular, includes the proteins.

However, also computational approaches have always been restricted by available resources and, therefore, many problems have remained unsolved. In recent years, computer simulations have contributed substantially to a better understanding of phase transitions in general, including thermodynamic transitions in polymer systems which require mutual interaction of non-bonded monomers (such as collapse, aggregation, and adsorption at substrates). Many of these studies were done in the conventional way of thinking that phase transitions only occur in very large systems close to the thermodynamic limit. This brought up the idea of finite-size scaling; a concept which has also successfully been applied to polymer systems.1, 2 However, it has also turned out to be quite difficult to use this approach for transitions based on nucleation processes, where local effects, including competing effects of monomer arrangement inside the nucleus and at the surface govern the whole nucleation process. That means, before crystallization can be perceived as a condensation process on macroscopic scales, the system has to pass a series of “subphase” transitions,3 which depend on microscopic details and do not necessarily systematically scale with system size. This has been extensively studied for small atomic clusters4–6 and, more recently, for polymers of finite length.7–12 The simulation and analysis of such transitions is demanding and requires computational methodologies and resources that have only recently become available. These methods, with generalized-ensemble Monte Carlo (MC) algorithms in the lead, even enable a different way of statistical analysis on the basis of the density of states or microcanonical entropy,13 which, although already having been known since the foundation of statistical mechanics, has widely been neglected in the long period of analytic studies (because the density of states is hardly accessible analytically). A systematic method to analyze structural transitions by means of the inflection points of the inverse microcanonical temperature has been introduced recently.10

In this paper, we will investigate how structure formation of a single elastic, flexible polymer depends on the range of mutual interaction between non-bonded monomers. The goal is to construct a phase diagram that separates potential structural phases for all classes of flexible polymers under the influence of a thermal environment. In recent years, much work has been dedicated to the identification of structural phases of flexible polymers by using standard representations of generic coarse-grained lattice and off-lattice models for polymers. However, as recent studies of discrete models have shown,7, 14, 15 it is also important to understand to what extent the formation of these structural phases is affected by the effective range of the attractive non-bonded interactions competing with excluded-volume effects. One of the most interesting features found in these studies was that, for sufficiently short interaction range, collapse and nucleation are not...
separate transitions anymore, and a liquid phase does not exist. It is also known that geometric properties of atomic clusters sensitively depend on the range of interaction.4–6,16

We present here the results of extensive generalized-ensemble Monte Carlo simulations of a generic Lennard-Jones model for elastic, flexible polymers in continuum in order to reveal the interaction-range dependent phase structure under the influence of finite-size effects. Since the latter essentially affects the behavior in the regime where coil-globule and freezing transitions meet, we also thoroughly compare conventional canonical and more detailed microcanonical analyses of this multiple transition point.

The paper is structured as follows. The flexible polymer model, the multiple-Gaussian modified ensemble replica-exchange Monte Carlo method,18 and the microcanonical statistical analysis are described in Sec. II. Results including the structural phase diagram are presented in Sec. III. The conclusions of our study are summarized in Sec. IV.

II. MODEL AND METHODS

A. Model

For our study, we employ a generic model of a single elastic, flexible homopolymer chain. The bonds between neighboring monomers are modeled using the anharmonic FENE (finitely extensible nonlinear elastic) potential19,20

$$U_{\text{FENE}}(r_{ij+1}) = -\frac{K}{2} R^2 \log\left[1 - \left(\frac{r_{ij+1} - r_0}{R}\right)^2\right].$$ \hspace{1cm} (1)

We locate its minimum at $r_0 = 0.7$, set $R = 0.3$, and choose $K = 40.8$. In addition to the FENE bonds all monomers, bonded and non-bonded, interact via a truncated, shifted Lennard-Jones potential

$$U_{\text{LJ}}^\text{mod}(r_{ij}) = U_{\text{LJ}}(r_{ij}) - U_{\text{LJ}}(r_c),$$ \hspace{1cm} (2)

with

$$U_{\text{LJ}}(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij} - r_s}\right)^{12} - \left(\frac{\sigma}{r_{ij} - r_s}\right)^6\right].$$ \hspace{1cm} (3)

where the energy and length scales are set to $\epsilon = 1$ and $\sigma = (r_0 - r_c)/2^{1/6}$, respectively. We choose a cut-off radius $r_c = 2.5\sigma + r_s$ such that $U_{\text{LJ}}^\text{mod}(r_{ij}) \equiv 0$ for $r_{ij} > r_c$ and $U_{\text{LJ}}(r_{ij}) = (-3.983616/244140625)\epsilon \approx -0.016317\epsilon$. The total energy of a conformation $\mathcal{C} = (\vec{r}_1, \cdots, \vec{r}_N)$ for a chain with N monomers is then given by

$$E(\mathcal{C}) = \sum_{i<j}^N U_{\text{LJ}}^\text{mod}(r_{ij}) + \sum_{i}^N U_{\text{FENE}}(r_{ij+1}).$$ \hspace{1cm} (4)

Within our simulations, the parameter r_s is used to control the width of the potential. The qualitative behavior of the influence of r_s on the shape of the potential is shown in Fig. 1. While it is convenient to use r_s in the definition of the potential, it is more useful for the subsequent analysis to introduce the potential width δ as a new parameter. For this purpose only, we define a square well potential

$$U_{\text{sq}}(r) = \begin{cases} \infty & \text{if } r \leq r_1, \\ -\epsilon_{\text{sq}} & \text{if } r_1 < r < r_2, \\ 0 & \text{if } r \geq r_2. \end{cases}$$ \hspace{1cm} (5)

with the constant $\epsilon_{\text{sq}} = \epsilon/2 + U_{\text{LJ}}(r_s)$ such that $\epsilon_{\text{sq}} = (23617393/488281250)\epsilon \approx 0.483683\epsilon$ and r_1 and r_2 being the radii where $U_{\text{LJ}}^\text{mod}(r_1) = U_{\text{LJ}}^\text{mod}(r_2) = -\epsilon_{\text{sq}}$, independently of r_s (see Fig. 2).

The relationship between the simulation parameter r_s and the potential width δ is linear

$$\delta = r_2 - r_1 = \lambda(r_0 - r_s),$$ \hspace{1cm} (6)

with

$$\lambda = 2^{1/6} \left[\left(1 + \sqrt[1/6]{\frac{1}{2}}\right) - \left(1 - \sqrt[1/6]{\frac{1}{2}}\right)^{1/6} \right]$$

$$\approx 0.312382.$$ \hspace{1cm} (7)

The maximum value of δ is determined by the unmodified Lennard-Jones term, i.e., for $r_s = 0$, and reads $\delta_{\text{max}} = \lambda r_0 \approx 0.218667$.
B. Simulation method

For our simulations, we employed the replica-exchange Monte Carlo method known as parallel tempering.\(^{22-24}\) In this method, \(n_f\) replicas of the system are simulated at different temperatures. In a single MC update, the configuration of each replica is altered by random local displacements of single monomers. For an inverse thermal energy \(\beta = 1/k_B T\), with \(k_B \equiv 1\) in our simulations, the probability of accepting such an update is given by the Metropolis criterion:\(^{25}\)

\[
p = \min(1, \exp[-\beta (E_{\text{new}} - E_{\text{old}})]).
\]

where \(E_{\text{old}}\) and \(E_{\text{new}}\) are the energies before and after the proposed update. An exchange of the conformations of replicas \(i\) and \(i + 1\), with inverse temperatures \(\beta_i\) and \(\beta_{i+1}\), respectively, is proposed after a fixed number (in this case 1000) of MC steps. This exchange is accepted with the following probability:

\[
p = \min(1, \exp[(E_i - E_{i+1})(\beta_{i} - \beta_{i+1})]).
\]

In principle, this method allows each copy of the system to heat up and cool down over the entire simulated temperature range. One set of simulations was performed on graphics processing units (GPUs) using either \(n_f = 112\) or \(128\) replicas. The calculation of the energy was carried out in parallel by using 128 threads per replica. Consequently, there were up to 16 384 threads running concurrently on the graphic cards. The advantages of utilizing graphic cards for parallel tempering simulations of polymers are discussed in more detail in Ref. 17. This simple scheme can be applied for values of \(\delta\) as small as about 0.06. For smaller values, the freezing transition barrier becomes so strong that an algorithmic improvement is necessary.

Such is made possible by multiple Gaussian modified ensembles (MGME).\(^{18}\) This Monte Carlo method retains all advantages of parallel tempering, in that it facilitates efficient implementation on parallel computers. At the same time, the sampling of entropically suppressed conformations is increased. The method allows to simulate strong first-order polymer crystallization for chain lengths up to \(N = 147\) at very small interaction width \(\delta \approx 0.030\) and for the 90-mer down to \(\delta \approx 0.015\). A simulation of all structural phases of these polymers with standard parallel tempering is virtually impossible. We performed MGME simulations on a parallel computer cluster using the message passing interface (MPI).

The basic idea of MGME simulations is to multiply the Boltzmann factor of single canonical ensemble by a Gaussian form centered around some central energy value \(E_{G,i}\) and a width \(\Delta E_G\), such that \(P_{\text{MGME},i} \sim e^{-\beta_i E - [(E - E_{G,i})/\Delta E_G]^2}\). In consequence, the probability for a state with energy \(E\) to occur in the \(i\)th modified ensemble becomes

\[
P_{\text{MGME},i}(E) \sim e^{S(E) - \beta_i E - [(E - E_{G,i})/\Delta E_G]^2},
\]

where \(S(E) = \ln g(E)\) is the microcanonical entropy and \(g(E)\) is the density of states. In case of first-order-like transitions, \(S(E)\) becomes convex with \(d^2S(E)/dE^2 > 0\) in a certain finite energy interval, limited by two distinct energies \(E_+\) and \(E_-\) with \(d^2S(E)/dE^2(E = E_+) = d^2S(E)/dE^2(E = E_-) = 0\). In this case, the energy distribution is bimodal. In MGME simulations, the counter term to \(S(E)\) in Eq. (10) of the form \(-E(\Delta E_G)^2\) shifts positive \(d^2S(E)/dE^2\) values to negative, provided that \(\Delta E_G\) is small enough. Thus, energy distribution functions within the single Gaussian ensembles \(P_{\text{MGME},i}(E)\) have strictly unimodal shape. This absence of double-peaked distributions improves the Monte Carlo sampling problem of entropically suppressed regions of state space, while a proper choice of the remaining parameters \(E_{G,i}\) and \(\beta_i\) ensures a sufficient overlap between neighboring parallel tempering partitions at \(i\) and \(i + 1\). Possible algorithmic approaches to the parameter choice are described in Ref. 18. For illustration, in Fig. 3 we show a combined energy histogram obtained in actual MGME simulations, the multi-histogram

\[
H_{\text{multi}}(E) = \sum_{i=1}^{n_f} H_{\text{MGME},i}(E),
\]

where \(H_{\text{MGME},i}\) is a single histogram in the MGME. The simulation covers the entire energy interval of interest for a \(N = 90\) polymer at \(\delta \approx 0.030\). In addition, neighboring single energy histograms in-between \(i\) and \(i + 1\), as displayed in the figure, have sufficiently large overlap to facilitate swap-updates with reasonable acceptance rates. For the given example, the overlap \(O_i = \int \min[P_{\text{MGME},i}(E), P_{\text{MGME},i+1}(E)]dE\) in-between neighboring probability distributions of the parallel tempering partition was tuned to a value \(O_i \approx 0.6\) \forall i. This particular value results in acceptance rates \(P_{\text{acc}} \approx 0.5\) for swap updates. We remark that less optimal parallel tempering partitions for MGME simulations can easily be found, and as long as \(O_i > 0.1\) are still considered to be efficient. In our early simulations, we actually employed the simple displacement updates for all Cartesian monomer coordinates. For these, we measure the tunneling auto-correlation time \(\tau_{\text{tunnel}}\) in units of sweeps, which counts the time in-between the assignment of a specific conformation (on the parallel tempering partition) to \(i = 1\), then to \(i = n_f\), and finally to \(i = 1\) again. Figure 4 displays these times (triangles) for the \(N = 90\) polymer as a function of \(\delta\). We observe rapidly increasing values for short ranged potentials, which renders simulations of short ranged potentials hard. In typical parallel tempering simulations, we perform \(O(10^9)\) sweeps for each of the
C. Microcanonical analysis

For the microcanonical analysis of our data, we use the inflection-point method proposed in Ref. 10. Since all simulations were done using the parallel tempering method, we obtain the energy histograms \(H_i(E) \) \((i = 1, \ldots, n_r)\). Each histogram is an estimate for the density of states \(g_i(E) \propto H_i(E) \exp(\beta_i E) \) up to an unknown constant, which is different for each \(\beta_i \). For the analysis of the microcanonical entropy and its derivatives, it is convenient to continue working with the ratio \(g_i(E + \Delta E)/g_i(E) \). Entropic differences can then be written as

\[
\Delta S_i(E) = S_i(E + \Delta E) - S_i(E) = \ln[g_i(E + \Delta E)/g_i(E)] = \ln[H_i(E + \Delta E)] - \ln[H_i(E)] + \beta_i E. \tag{12}
\]

Introducing the following weight:

\[
w_i(E) = \frac{H_i(E + \Delta E) \cdot H_i(E)}{H_i(E + \Delta E) + H_i(E)} \tag{13}
\]

which is reciprocally proportional to the variance of \(\Delta S_i(E) \), yields the weighted average over all histograms

\[
\overline{\Delta S(E)} = \frac{\sum_i \Delta S_i(E) w_i(E)}{\sum_i w_i(E)}. \tag{14}
\]

This result can be used for an approximation of the inverse microcanonical temperature, defined as

\[
\beta(E) \equiv T^{-1}(E) = \left(\frac{dS}{dE} \right)_{N,V} \approx \frac{\overline{\Delta S(E)}}{\Delta E}. \tag{15}
\]

Inflection-point analysis of \(\beta(E) \) allows us not only to locate, but also to classify transitions in the system. In this scheme, a transition is of first order, if the derivative of \(\beta(E) \) at the inflection point has a positive peak value \(\gamma(E) = d\beta(E)/dE > 0 \). Consequently, an inflection point with a negative peak value corresponds to a second-order-like transition.

In the example illustrated in Fig. 5, \(\beta(E) \) has an inflection point at \(E \approx -350 \) and the corresponding peak in \(\gamma(E) \) is positive. The associated transition is, therefore, first-order-like. Another inflection point of \(\beta(E) \) is found at \(E \approx -375 \). The peak in \(\gamma(E) \) for this energy is below zero, indicating a second-order-like transition.

III. RESULTS

A. Comparison with previous work and microcanonical interpretation

In a recent study, Taylor et al.15 investigated a flexible homopolymer chain, where the non-bonded monomers interact via a square-well potential with variable width. Constructing a phase diagram as a function of temperature and potential width they identified three phases for sufficiently large interaction ranges: expanded coils for high temperatures and crystalline structures for very low temperatures, separated by a collapsed-globule phase for intermediate temperatures. The collapse transition was found to be pre-empted by the freezing transition for narrow potentials. While in a canonical analysis approach the signals for the collapse transition vanish, the microcanonical approach is still able to locate the positions of all transitions.

Since the collapse transition point is included in the Maxwell regime of the liquid-solid transition, Taylor et al.15 concluded that what remains is a first-order-like transition from coil to crystal. This argumentation is fully consistent with the assumption that liquid-solid and coil-globule transitions become indistinguishable in the thermodynamic limit. For the continuum model we used in our study, we can clearly confirm these findings. Figure 6 shows how the inflection point associated with the second-order collapse transition enters the Maxwell regime of the liquid-solid transition (dashed lines), if \(\delta \) is decreased below a threshold value.

However, this argumentation is not sufficiently consequent in light of the microcanonical interpretation of the results obtained for a finite system. First, the Maxwell construction is adapted from the theory of real gases, where it is necessary to get rid of unphysical behavior in the infinite...
system. Here, this is not necessary. The “back-bending effect” smoothly disappears for large systems. Therefore, a Maxwell construction is not needed at all. The analysis of inflection points is sufficient to uniquely identify and classify transitions. Second, in contrast to the canonical “heat bath” temperature, the inverse microcanonical temperature is a well-defined quantity on fundamental statistical grounds. Taking this into account, both transitions remain separate, but microcanonically they cross over. This is a pure finite-size effect. Both transition temperatures will converge to the same transition point in the thermodynamic limit.

In Fig. 6, the microcanonical temperature curves are shown for three potential widths, $\delta \approx 0.06$, 0.03, and 0.015. Circles mark the transition points for the Θ-collapse and triangles the freezing transition. In addition to the results from the inflection-point analysis, the Maxwell line associated with the freezing transition is also included. While for rather broad potentials, i.e., $\delta \gtrsim 0.1$ the temperatures obtained by inflection-point analysis and Maxwell construction match, these definitions of the transition temperature differ for narrower potentials.

B. δ dependency

In the following, we will investigate how the interaction range δ of the potential influences transition points in the system. We have plotted the first and second derivatives of the microcanonical entropy for the 90-mer in Fig. 7 as well as specific heat curves and thermal fluctuations of the radius of gyration in Fig. 8. In Fig. 7 (top), the inverse microcanonical temperature is shown as a function of energy. The unmodified and largest interaction range $\delta = \delta_{\text{max}} \approx 0.22$ corresponds to the leftmost temperature curve. Two effects can be observed as the potential width δ is reduced: The freezing transition marked by the non-monotonic region, also referred to as “back-bending” or “convex intruder,” is shifted to higher energies. It also gets more pronounced for narrower potentials. Another effect of narrowing the interaction length is that the collapse transition, indicated by the shoulders in the curves, shifts to lower temperatures. The difference in transition temperatures becomes smaller and smaller for shorter interactions range. In the bottom part of Fig. 7, we show the second derivative of the entropy. With decreasing potential width the freezing transition, signaled by the peak of positive value, shifts to higher energies. The first four curves also show a peak with negative value below the freezing transition, marking the solid-solid transition from anti-Mackay to Mackay overlayers in the incomplete outer shell of the icosahedron in the core. Note that the solid-solid transitions are second-order-like and occur only for $\delta > 0.12$. At higher energies, above the freezing transition, the curves exhibit a maximum marking the collapse transition. This maximum is shifted to lower energies, as δ decreases.

We also looked at two canonical quantities to identify transitions in the system. A typical quantity that gives insight into the thermodynamic behavior of the system is the specific heat, as shown in Fig. 8(a). With decreasing potential width, the signal for the freezing transition, i.e., the pronounced peak at low temperatures, shifts to slightly higher temperatures. For smaller values of the interaction length, the freezing temperature drops again. The maxima of the peaks increase with decreasing δ. The solid-solid transition is just visible as a small shoulder below the freezing peak. While the freezing temperature changes only slightly, the collapse temperature undergoes more significant changes. The shoulders indicating the collapse transitions become narrower with decreasing potential width. In this case, it is often more advantageous to investigate structural quantities, such as the radius of
gyration r_{gyr}, which is a measure for the spatial extension of the polymer. Let us discuss the thermal fluctuations of r_{gyr}, as shown in Fig. 8(b). For each δ, there are two prominent peaks. The low-temperature peaks belong to the liquid-solid transition and their locations agree well with those of the respective specific heat peaks. At higher temperatures, we find very pronounced peaks that indicate the collapse transition. Again, we can see that with smaller δ the difference between gas-liquid and liquid-solid transition temperatures is getting smaller. The Θ-collapse moves to lower temperatures for short interaction ranges. To compare different approaches for transition temperatures, we show the behavior of three definitions for the freezing transition in Fig. 9. While specific heat peaks and Maxwell construction agree over the entire δ-range, the values obtained via microcanonical analysis visibly deviate for $\delta < 0.1$. This is not surprising, because in the case of the specific heat and Maxwell indicators freezing and collapse signals mix, whereas the inflection points purely indicate the freezing transition only. Therefore, we will construct the structural phase diagram in the following entirely by means of the microcanonical inflection points of the inverse temperature.

C. Phase diagram

With all the transition temperatures acquired from the microcanonical analysis, we can construct the structural phase diagram for the 90-mer, parametrized by temperature T and interaction range δ. There are three major phases, see Fig. 10. In the “gas” phase G at high temperatures and short-range interaction, polymer conformations are dominated by expanded coils. For interaction ranges $\delta \gtrsim 0.02$, the “liquid” phase L separates the gas phase from distinct solid phases. The red curve in Fig. 10 is the Θ-transition line, where the expanded coil collapses into disordered, but compact globular states. Reducing the temperature, the polymer structures change from globular to crystalline at the freezing transition line indicated by the green line. With decreasing potential width the liquid phase region becomes smaller, as the collapse transition shifts to lower temperatures. The inset in Fig. 10 shows the crossover of collapse and freezing at very small interaction ranges. In the microcanonical analysis, it is still possible to single out both transition temperatures. At about $\delta = 0.12$ the solid-solid transition (blue line) merges with the freezing transition. The solid phase $S_{\text{fcc-}\text{deca}}$ is dominated by structures with at least one icosahedral core and an incomplete outer shell of anti-Mackay type (hcp), see Figs. 1 and 2 in Ref. 8. By reducing the temperature further and passing the solid-solid transition line, the packing is optimized and a Mackay-type fcc layer forms (phase $S_{\text{fcc-M}}$). However, the icosahedral interior becomes energetically less optimal for $\delta < 0.15$, and it is replaced by a decagonal arrangement of monomers. These structures can also possess extended fcc-packed fractions ($S_{\text{fcc-deca}}$). Following former studies of atomic cluster models with short-ranged interactions, one might expect a separate fcc phase to be present at extremely small δ-values and temperatures. We will discuss this crossover in more detail for a simpler example in the following.

D. Analysis of low-temperature structures

The characterization of the solid phases in the structural phase diagram is challenging and almost completely determined by surface effects. It is instructive to investigate the low-temperature crystal structures of flexible polymers at different ranges δ of the monomer–monomer interaction potential. As an example, we choose the 55-mer, which forms a perfectly shaped icosahedron for $\delta = \delta_{\text{max}} \approx 0.220$. In contrast to the 90-mer, its geometric phases are more stable and can be identified clearly. The qualitative behavior however, is similar for longer chains.
The integrated radial distribution function with respect to the identification of the solid phases, it is useful to measure the integrated radial distribution function with respect to the particle closest to its center of mass (com), i.e., the total number of monomers inside a sphere of radius \(r \) around the center monomer \(i_{\text{com}} \)

\[
N^s_{i_{\text{com}}} (r) = \sum_{i \not= i_{\text{com}}} \Theta(r - r_{i,i_{\text{com}}}) ,
\]

where \(r_{i,i_{\text{com}}} \) is the distance between monomer \(i \) and the center monomer, and \(\Theta(r) \) is the Heaviside function. The results are shown in Fig. 11, where each individual curve is the average over the data measured for each of the \(10^6 \) conformations. One can clearly differentiate two types of curves for \(N^s_{i_{\text{com}}} (r) \). For \(\delta = \delta_{\text{max}} \approx 0.220 \), we know that the monomer positions correspond to the vertices in two icosahedral layers with radii of circumscribed spheres of 0.67 and 1.33, containing 13 and 55 monomers, respectively. That fact is clearly supported by the corresponding jumps in \(N^s_{i_{\text{com}}} (r) \) marked by grid lines at the bottom scale. For decreasing interaction range, starting at \(\delta < 0.12 \), the shape of \(N^s_{i_{\text{com}}} (r) \) changes qualitatively, indicating that the low-energy states are not icosahedral anymore, which is consistent with Fig. 10 (bottom). The function now shows jumps at radii corresponding to \(n \)th nearest neighbor distances in the fcc lattice (upper scale and grid lines). We emphasize that this crossover picture is very stable, even though we measure at temperatures well above \(T = 0 \).

In order to unravel the structural details, we now look at the putative ground-state structures and measure their (binned) pair distribution function

\[
g(r) = \sum \left(N^s_i (r + 0.5 \Delta r) - N^s_i (r - 0.5 \Delta r) \right).
\]

where we set \(\Delta r \leq 10^{-2} \). In other words, we measure distances between all pairs of monomers in the configuration, rather than only the distance of all monomers from a single center monomer as above, and count them in a histogram. We can clearly differentiate three different structural types in different regions of the interaction length. We plot \(g(r) \) in Fig. 12 for three representative values of \(\delta \) and visualize the corresponding conformations in Fig. 13. The peaks of the red curves (open squares) in Fig. 12 correspond to icosahedral structures, which have been discussed above. For very small \(\delta \) (blue peaks, filled diamonds), i.e., for very short ranged potentials, we find that all peaks coincide with nearest neighbor positions in the fcc lattice. In Fig. 12, the values at the edge lengths \(r_0 = 0.110 \) (open squares), \(\delta \approx 0.110 \), icosahedral grid lines and values at top scale correspond to \(n \)th nearest neighbor (\(1 \leq n \leq 19 \)) positions in the fcc-lattice with lattice constant \(r_0 \), cf. Eq. (1).
top scale and the grid lines correspond to the nth-to-nearest neighbor distances \(1 \leq n \leq 19\) in the fcc lattice. All peaks of \(g(r)\) of the ground state at \(\delta \approx 0.030\) agree very well with these values. However, there are structures in-between (green peaks, filled squares), which are neither icosahedral nor completely fcc structures. Those structures resemble ground states found for atomic, range-dependent Morse clusters\(^4\).\(^5\) In fact, the ground state at \(\delta \approx 0.110\) corresponds to the decahedral structure “55C” found in Ref. 5 (cf. Fig. 13 (b) and Fig. 7 in Ref. 5). For other values of \(\delta\) close to 0.110, we also find the defective decahedral structures described there.

IV. SUMMARY

We have studied the influence of the interaction length of a Lennard-Jones potential on the structural behavior of an elastic flexible polymer. We applied advanced simulation methods by using replica-exchange parallel tempering on graphics cards and multiple Gaussian modified ensembles to tackle the strong first-order-like behavior of the freezing transition. We employed the microcanonical inflection-point analysis method\(^1\)\(^0\) that made it possible to construct a structural phase diagram for an elastic flexible polymer with 90 monomers. This analysis of the microcanonical entropy allows to resolve the positions of structural transitions, which are much more uncertain in canonical analyses. We are able to precisely locate and also classify transitions by investigating the first and second derivative of the entropy. Both derivatives can be evaluated easily. We find that the liquid phase, separating the extended coil “gas”-like phase from the crystalline solid phases, becomes smaller for shorter interaction ranges. For sufficiently small interaction range, we eventually observe a crossover of transition lines. The crossover point marks the triple point in the thermodynamic limit and thus the direct transition from gas to solid. According to the microcanonical signals, both transitions remain separate for finitely long polymers. Summarizing the structural analysis of the solid phases, we find that the icosahedral ground-state structures identified for the standard Lennard-Jones potential\(^8\) do not survive at smaller interaction ranges. In analogy to former studies of atomic Morse clusters\(^4\)\(^-\)\(^6\) we find transitions from icosahedral to decahedral and fcc structures for decreasing interaction range. These transitions are strongly influenced by the repulsive part of the potential as they are mainly triggered by released stresses in the conformation.

ACKNOWLEDGMENTS

This work has been partially supported by the National Science Foundation (NSF) under Grant No. DMR–1207437 and by the supercomputer time grant VSR Project 5082 of the Forschungszentrum Jülich.

\(^14\) A. Milchev, A. Bhattacharya, and K. Binder, Macromolecules 34, 1881 (2001).

